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PREFACE

This Memorandum stems from RAND's continuing interest in optimal

maintenance policies. It reports the results of research on adaptive

age replacement.

The Memorandum is addressed to mathematical statisticians and

operations research personnel concerned with age replacement under

conditions where it would be unrealistic to assume that the failure

distribution is known precisely. A subsequent study will present

numerical results obtained using a computer code now in preparation,,

This research was undertaken as a part of the reliability assess-

ment study that RAND is conducting for the Apollo Reliability and

Quality Office, Headquarters NASA, under contract NASr-21(ll)»
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SUMMARY

Under certain parametric assumptions, a Bayesian approach to

adaptive age replacement is treated via dynamic programming. We

prove that the adaptive policy has an important asymptotic optimality

property: viz., that the replacement intervals set converge (w.p.l)

to the one we would use if we knew the true parameter value. Various

other asymptotic results are obtained. An important suboptimal policy

is partially characterized.

PRECEDING PAGE BLANK NOT FILMED.
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1. INTRODUCTION

Under an age replacement policy, we replace at failure or at the

end of a specified time interval, whichever occurs first. Age replace-

ment makes sense when a failure replacement costs more than a planned

replacement and the failure rate is strictly increasing. We assume

an infinite horizon and continuous discounting, with the loss incurred

at the time of replacement and the total loss equal to the sum of -the

discounted losses incurred on the individual stages. (A stage is the

period starting just after one replacement and ending just after the

next replacement.) The cost of a planned (failure) replacement is

c.(c ), where 0 < c < c . Suppose that a stage starts at time t and

we set a replacement interval a, chosen from the extended half-line

[0,oo], If replacement actually occurs at t+x., then the loss incurred

on that stage is

(1) L(a,x,t) =

e-a(t+a) , if x = a

c. e .c, if x < a

where 3 is a positive discount rate,,

We shall make a strong parametric assumption: viz., that the

failure distribution belongs to the family

(2) F.(y) =

.

1 - e"Xy , y ;> 0

0 , elsewhere

k > 1 and known.
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For fixed \, we have a Weibull distribution with known shape parameter

k-1
and strictly increasing failure rate \ky . We assume that \ has a

fixed (but unknown) value \ • We further assume that we have at hand

a prior distribution G with specified parameters which we modify after

each stage according to Bayes's rule. If G has density

(3) g(\jb,c) =

0, elsewhere

the posterior density in case of planned replacement at a [failure

k k
replacement at x] is again a gamma density g(\;b+a ,c) [g(\;b-bc ,c+l)].

Thus, we have a natural conjugate prior distribution C9].

The loss structure (1) was considered earlier in [5]. This is

not the usual model considered in the literature. Several authors

(see, e.g., [1]) have treated the case where the failure distribution

is known and the criterion is expected cost per unit time. In that

case, the optimal replacement interval to set is found as an elementary

application of renewal theory. Note that, with unknown failure distri-

bution, if the loss were (literally) undiscounted cost per unit time,

the problem of finding a suitable adaptive policy effectively reduces

to the preceding case, since we could ignore the loss in any finite

transient period while we learned about the failure distribution. With

discounting, there is a tradeoff between minimizing expected loss with

respect to one's current prior distribution for \ as if future infor-

mation obtained about the failure distribution were to be ignored, and

acquiring maximal information about the failure distribution so as to

minimize future losses. We take account of this intuitive consideration
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in a precisely defined way via dynamic programming.

An alternative procedure would be to act as if our current estimate

of \ were the true value; as our estimate is updated from stage to stage,

we would modify the replacement interval set accordingly. It would seem

intuitively desirable to bias the replacement intervals set on the high

side, but it is not clear precisely how to do this.
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2. DYNAMIC PROGRAMMING FORMULATION

Suppose a replacement interval a is set and replacement occurs

at t+x. We assume that replacing a unit takes an interval A« Now

we apply Bayes's rule: to obtain the new state variables, make the

transformation

!

(b+ak, c, t+a+A), if x = a

k
(b+x , c+1, t+x+A), if x < a.

Note that c increases in steps of 0 or 1. Dependence on t can be

suppressed, since we shall restrict the class ^ of policies to those

Baire functions mapping Q = {(b,c):b > 0, c > 0] into [|,oo], where

except for Theorem 2 we take £ = 0. Note that O is the set of non-

randomized, stationary policies.

The expected loss from the next replacement when the state is

(b,c,0) is

0(a,b,c) = c. e"*3'_S_VUv
(5)

a -OK k-1 .
, , - i e x dx

2 kcb••I
since f F (x) dG(x;b,c) = 1 - [b/(b+x )]°. Toward describing the

0 X

future-stages cost, consider an arbitrary Baire function v from 0 to

the nonnegative reals. It is convenient to think of v(b,c) as the

aggregate discounted cost obtained from proceeding in some (unspecified)

way from the state (b,c). If this were the case, the future-stages cost



-5-

T(a,b,c,v) would be given by

(6) T(a,b,c,v) = Hh-l e'0® v(b+ak, c)

k e"0^ v^1

+ kcb" I v(b+x , c+1) x

- C+1o

As is often the case in dynamic programming problems, it is

useful to introduce notation describing the effect of using policy

TT for one stage with terminating cost function v. Hence, we define

the one-stage cost function Y and the operators j and H by
TT TT TT

Y^Cbjc) = 0[rr(b,c), b,c]

(T^vXbjC) = T[Tr(b,c), b,c,v]

H v = f + B T v,
TT TT TT

where B = e €[0,1] is a discount factor.

The one-stage optimization operator A and the minimal risk

function R are now defined by

(7) (AvXb,c) = inf (H v)(b,c)

(8) R(b,c) = inf v (b,c),

where, with 0 as the zero function on fl, we define

(9) v = lim Hn(3).
TT TTn-ico
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THEOREM 1. If p < 1,

(i) R is the unique bounded fixed point of A;

(ii) v is a bounded Baire function =* A v-»R uniformly on fl;

(iii) R is continuous;

(iv) the infima of H R and v are attained;
TT TT

(v) R is minimal over all policies.

PROOF, v < c0/(l - B). Since A is a contraction mapping, the theorem
TT *•

follows from the fact that the uniform limit of continuous functions is

continuous and from results in [3]; viz., Corollary 2, Theorem 3 and

Theorem 5.||

If P = 1, it can be shown that (i) remains true with "unique" replaced

by "smallest positive;" we conjecture that (ii)-(v) remain true, except

that "uniformly" is to be replaced by "pointwise." The fact that

AR = R also follows from the heurlstically derived principle of opti-

mality; see, e.g., [2], An alternative argument for (iv) uses the fact

that the policy space is compact with respect to the topology of point-

wise convergence [7]. In (v), the phrase "all policies" includes

randomized, nonstationary policies.

REMARK. When the failure distribution is known, it is easily shown

*
that the optimal planned replacement age a does not depend on the age

*
of the item we start with (provided that it is less than a ) -- a

result that is perhaps intuitively obvious. A. F. Veinott (personal

communication) conjectured (correctly) that with the above Bayesian

set-up this translation invariant property no longer holds. At each

stage we assume that we start with a unit of age zero.
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Let TT be a minimizer for the functional equation v = min{H v:

v bounded}; then the policy TT is optimal by Theorem 1. If we knew R,

we could find TT. Although no solution to AR = R is apparent, we shall

find a sequence (R̂ (b,c)} such that R̂ (b,c)-»R(b,c). There are many

sequences converging to R, but {R»j} has an important asymptotic optimality

property to be described in the sequel (Theorem 2).

Let us at first proceed heuristically. Instead of following an

adaptive policy indefinitely, suppose we were to do so for N stages;

from the (N+l)-st stage onward we would set the same replacement interval

that we did on the N-th stage. Call the minimal "risk" when we are to

adapt for exactly n more stages R (b,c). (We compute R (b,c) as if the

value of (b,c) remained fixed after the N-th stage. Thus, R (b,c) may

really not be the "true" minimal risk, but it turns out to be a useful

fiction.) Either directly or using the optimality equation, we can

readily show that

(10) R1(b,c) = min

where

-««/ h x

(11)

f 0(a.b,c) "1

|_l-p6(a,b,c)J'

„, , . -oral b \ c /
6(a,b,c) = e I £ I + kcb I

(b+xk)

We obtain recursively

(12) Rn(b,c) = min{0(a,b,c) + pT[a,b,c,Rn_1]}, n > 1 .

Let n (t»,c) be a minimizing a in (12) [in (10), if n = 1]. Although
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the original policy of adapting only for N stages is not stationary,

we shall take a particular N and use the stationary policy (TTN, TL., ...)

Nothing in the sequel depends on the interpretation of R . In

operator notation, R .. = A R.. It is easily seen that R depends

continuously on |; hence as §-»0, we approach the unconstrained minimum.

Note that both R and TT depend on £> although the notation does not

explicitly indicate this dependence.
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3. ASYMPTOTIC PROPERTIES

Let

where

(14)

(15)

j*

r
When X° is known, a stationary policy is one for which each decision

is the same independent of previous decisions, number of replacements,

and transition times (replacement ages). Note that the sequence

[(b ,c )} is a function *f the initial value of (b,c), the policy, and

the sequence of independent and identically distributed random variables

[Y ), where Y. has distribution F . Throughout the sequel, convergence

with probability one (w.p.l) is with respect to the measure induced by

F on the sequence space X._1(0,oo). We now state our main results.
A."

THEOREM 2 (asymptotic optimality). If p < 1.

(i) R (a) has a finite unique unconstrained minimizer. say a*;

(ii) When \° is known, there exists a stationary, nonrandomized

optimal policy with risk R^ (a*);

if a* ;> § > 0, then for N = 1, 2, ...
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(iii) lim Rxo[TTN(bn,cn)] =Rxo(a*) w.p.l;

(iv) lim TTN(bn,cn) = a* w.p.l.

THEOREM 3. Assume p < 1; then RN~*R uniformly over Q and -n ->a =» a is.

optimal for R. {Tt,(b,c)} has a convergent subsequence, for (b,c) fixed.

Denote the expected (undiscounted) cost up to time t when a replacement

interval a is set at each stage by C(t,a;b,c). We define expected cost

per unit time by lim C(t,a;b,c)/t, where renewal theory can be used to

show that the limit exists.

THEOREM 4. With the constraint on the replacement intervals set that

they must all be equal, the minimal risk when the criterion is expected

cost per unit time is lim aR,(b,c;a).
erlO

Let us first prove Theorem 2. Parts (i) and (ii) follow from

results in [5] and [3], respectively. Noting that (i) and (iii) =* (iv),

it remains to prove (iii). For this we need some preliminary results.

LEMMA 1. Let X = min(a,Y), where a is a constant. The variance of

X is increasing in a. It Y has distribution F , the variance of X

is maximized at a = <» and is finite.

PROOF. Generalizing a result of the author, R. Strauch (personal

communication) has supplied a proof that, whatever the distribution

of Y, truncation reduces the variance. The proof goes as follows:

Set D = Y-X. Var Y = E(X+D)2 - [E(X+D)]2 = Var X + Var D + Z(EXD-EXED).

But EXD = aED since D t 0 => X = a; in addition, EX <. a. Hence

Var Y ^ Var X. The second assertion of the lemma now follows from

the fact that, in our case, Y is exponentially distributed. ||
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LEMMA 2. A£ b,c-»°° , with c/b remaining bounded.

.c) = R^b.c) + o(l), N = 2,3, .

PROOF. From inspection of (5) and (10) -(12), we have

(16) TCa.b.c.Rj] = 6(a,b,c)R1(b,c) + o(l) •

Note that (10) implies

(17) R̂ b.c) = min[0(a,b,c)+ p6(a,b,c)R1(b,c)].
a

Hence

(18) R2(b,c) = min[0(a,b,c)+ p6(a,b,c)R1(b,c)
a

by (12) and (16)

= R..(bac) + o(l) by (17) (comparing minimands)

= min[0(a,b,c)+ p6(a,b,c)R2(b,c)

By induction on the hypothesis R̂ (b,c) = R.(b,c) + o(l),

(19) R̂ (b,c) = min[0(a,b,c)+ p6(a,b,
Si

N=l,2, ..., and so

(20) S(*,c) - ̂.̂  + "(I)

completing the proof. I
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LEMMA 3. Under any policy for which a , the n-th replacement interval1 : n

set, must be at least e > 0, n=l,2,..., c /b -»x° w.p.l..

PROOF. For n=l,2,..., let X = min(a ,Y ) and U = 1 if Y < a , 0
' ' n n n' n n n'

otherwise, where Y has distribution F o. An easy calculation shows
^ A

that E(xkjan) = p(an)/X° and E(UQ|an) = p(an), where p(a) = l-exp(-x°a
k).

k
By Lemma 1, Var X is uniformly bounded over n for all (a ,a-,...);

the bound is achieved for (00,00,...). Therefore, by a standard martingale

convergence theorem [8, p. 387, Theorem E},

n
w.p.l, which is equivalent to [b -^ p(a.)/X°]/n-«0 w.p.l. Similarly,

n 1
we find that [c -^p(a.)]/n-»0 w.p.l. Combining these relations

n l i

yields (c - \°b )/n-*0 w.p.l. Hence, (b /n)(c /b - X°)-»0 w.p.l.

Since e > 0 =* lira inf b /n > 0 w.p.l, c /b -. X° w.p.l.||

LEMMA 4. Under any policy for which a ^ e > 0, Vn,

(0, X < \°
lim G(X;b ,c ) = <
n-« U, X * X°

w.p.l; in addition.

(21) 0(a,bn,cn)-0xo(a) w.p.l

(22) 6(a,bn,cn)-&xo(a) w.p.l.
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PROOF. The prior distribution at stage n is a gamma distribution

2
with mean and variance, respectively, c /b and c /b . By Lemma 3,

n n n n
2

c /b -»\° and c /b -»0 w.p.l. The first assertion of the lemma follows,
n n n n

Hence, we have (21) and (22) by the Helly-Bray theorem [8].||

PROOF OF THEOREM 2. In the sequel, {(b ,c )} denotes the sequence

of random variables generated by the policy TT . Recalling that

TTN(«,») , we apply Lemmas 2 and 3, obtaining

(23) lira = lim min + o_(l)
P '

"1
) ,
'J

where o (1) vanishes w.p.l as n-*oo. Since the minimand in (23) con-
P

verges uniformly for (3 < 1, we may interchange lim and min (see,

e-g«> [6"])' Applying Lemma 4, we have w.p.l

(24) lim RN(bn,cn) = min|

Let

= Rxo(a*), if a* fe 5-

(25) An(a) =

Since by (21) and (22) A. (a) converges w.p.l to 0 uniformly for

|J < 1, lim An[TTN(bn,cn)] <, lim sup A^a) = sup lim ̂ (a) = 0 w.p.l
n—«oo n-** â ^ aî  n-<o

and hence, using Lemma 2 and the continuity of T(»-,b,c,RN),
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(26) llm

w.p.l. Combining (26) with (24) completes the proof. ||

To prove Theorem 3, it suffices to take in particular v = R.

in the second assertion of Theorem 1. The first assertion of

Theorem 3 follows immediately. The remainder of the proof is

routine and is omitted.

REMARKS. Let YO[YN] minimize H (0)[H (A")), N > 1] . It is

easily seen that the stationary policy y is not asymptotically

optimal in the sense of Theorem 2, N = 1, 2, ..., because, when X° is

known, the optimal action at the first stage of a finite horizon

problem is not a*. It is likely that {A R } converges faster than

N;*
{A 0}. We conjecture that in Theorem 2 we can drop the condition

| > 0, although, since | can be taken arbitrarily small (but positive),

this is not of practical concern.

To prove Theorem 4 we may use a standard Tauberian theorem [10],

p. 192, paralleling the proof for an analogous theorem in [5].



-15-

4. PARTIAL CHARACTERIZATION OF II j_

Based on geometric considerations, we shall prove

THEOREM 5.

(i) b s [c(c_- Cl)/cia]
k (k - I)16"1 =»TT,(b,c) = « .

L 1 J. J.

(ii) Suppose that the inequality in (i) does not hold. Let ac(b,c)
— - . _ — - - - - O

denote the smaller positive root of -^- 0(a,b,c) = 0. Then

0(a ,b,c) s 0(0>>b,c) => TT, (b,c) = ooe

(iii) Suppose that neither of the preceding inequalities holds. Let

aL(b,c) denote the finite root of 0(a,b,c) = 0(»>b,c) that is

larger than ag(b,c). Then either TT, (b,c) = » or a (b,c) <

TT-, (b,c) < a (b,c).
X Li

PROOF. It will be shown later that 0(a,b,c) looks like one of the

five possibilities in Fig. 1. We shall also show that the number of

positive zeros (N.P.Z.) of-2- 0(a.b,c) satisfies
da

(27) N.P.Z.

where

2 , if b < Q

0 , if b > Q

1 , if b = Q

(28) Q = [c(c2- c1)/c1cr]
k (k - l)k-1 .

Referring to Fig. 1, case 4[5] holds if N.P.Z. = 0[1]; case 3 holds

if N.P.Z. = 2 and 0(as,b,c) £ 0(°°»b,c). Using simple dominance arguments,

the theorem follows from the fact that l-£)6(a>b,c) is increasing in a and

from inspection of Fig. l.ll
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Case 1

:: -c* \«• \
V --- / 0(ao, 6, c)

0(oo, b c)

u

•Q

Case 4

" V

0(oo, 6, c)

Note: A finite minimizer of

, b, c)

can occur only in the interval under

the solid portion of 0( a , b , c ).

Fig. 1 -- Possibilities for 0(a,b,c)
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To see that one of the cases shown in Fig. 1 must hold, we note

that the slope of 0(a,b,c), given by

. -r^t h V kC^C2-V 'k~1

(35) r̂ - c, Of
b+a

is negative at a = 0 and for all sufficiently large a. The case

that occurs depends on the number of positive zeros of — 0(a,b,c).
oa

The correspondence is

N.P.Z

2

0

1

case

(4)

(5)

where N.P.Z. = 2,0,1 as

•*N

01 > max

= a

kc(c2-c1) a

Cl(b+ak)

By setting the derivative of the maximand equal to zero, we find that

1/k
the maximum occurs at a = £(k-l)b̂ ] and hence (27) follows. Since

the derivative of the maximand has exactly one zero, — ^(a ̂  c) can
9a

cross the abscissa at most twice; i.e., •— - 0(a,b,c) has at most two
oa

positive zeros.

For the case when X° is known, we get a strikingly different

picture (Fig. 2). Since the optimal replacement interval is finite when

\° is known, it is remarkable that there are values of (b,c) such that
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Case
(1)

CO
,<e

c,k;

0x(oo)

Case
(2)

Note: The minimizer of R*(a) is finite. It iej in

the interval under the solid portion of 0v(a).

Fig. 2 -- Possibilities for 0 (a)
X
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TT, (b,c) = oo. An explanation for this phenomenon may be the fact

that a mixture [corresponding in our case to weighting \ by g(X;b,c)]

of increasing failure rate (IFR) distributions is not necessarily

k-1 k
IFR (see [!])• For our mixture, the failure rate is kcx /(b+x ),

which increases in the interval (0,q) and decreases in (q,co), where

1/k
q = [(k-l)b} . As an immediate corollary to a result in f4], we

obtain

THEOREM 6. Either TT^b.c) = o> _or TT,(b,c) € (0,q].

Theorems 5 and 6 can be used together to expedite the search for
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